Abstract

Mechanisms and kinetics of surface reactions in nanoporous platinum films were investigated. Nanoporous films of platinum of ∼250 nm thickness were deposited on glass slides by co-sputtering Pt and carbon followed by subsequently burning off carbon in air at 450 °C. Electrical resistance was measured in air and in 10% H2 + nitrogen at 80 °C as a function of time. The change in electrical resistance was extremely fast when switched to the H2 + N2 atmosphere. When switched to air, the film resistance increased with time at a much slower rate. The increase in resistance in air was attributed to the formation of Pt-oxide on the internal surfaces of the nanoporous films. The kinetics of oxidation was described by a model which includes two surface kinetic steps and a diffusional step. The use of nanoporous films makes it possible to investigate mechanisms and kinetics of surface reactions by ensuring a large surface to volume ratio. Oxide scale thickness at 80 °C in air after several hours of oxidation was only sub-monolayer. Oxide scale thickness after 3 h at 450 °C was about 1 nm. Implications of the results for proton exchange membrane fuel cell (PEMFC) Pt catalyst degradation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.