Abstract

Oxidation-reduction midpoint potentials (E(m)) have been measured for the thioredoxin-dependent, reductive activation of sorghum nicotinamide adenine dinucleotide phosphate- (NADP-) dependent malate dehydrogenase (MDH) in the wild-type enzyme and in a number of site-specific mutants. The E(m) value associated with activation of the wild-type enzyme, -330 mV at pH 7.0, can be attributed to the E(m) of the C365/C377 disulfide present in the C-terminal region of the enzyme. The C24/C29 disulfide, located in the N-terminal region of the enzyme and the only other disulfide present in oxidized, wild-type MDH, has a E(m) value of -280 mV at pH 7.0. A third regulatory disulfide, C24/C207, that is absent in the oxidized enzyme but is thought to be formed during the activation process, has an E(m) value at pH 7.0 of -310 mV. E(m) vs pH profiles suggest pK(a) values for the more acidic cysteine involved in the formation of each of these disulfides of 8.5 for C24/C29; 8.1 for C24/C207; and 8.7 for C365/C377. The results of this study show that the N-terminal disulfide formed between C24 and C29 has a more positive E(m) value than the two other disulfides and is thus is likely to be the "preregulatory disulfide" postulated to function in activating the enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call