Abstract

The oxidation-reduction potentials of lignin peroxidase isozymes H1, H2, H8, and H10 as well as the Mn-dependent peroxidase isozymes H3 and H4 are reported. The potentiometric titrations involving the ferrous and ferric states of the enzyme had Nernst plots indicating single-electron transfer. The Em7 values of lignin peroxidase isozymes H1, H2, H8, and H10 are -142, -135, -137, and -127 mV versus standard hydrogen electrode, respectively. The Em7 values for the Mn-dependent peroxidase isozymes H3 and H4 are -88 and -93 mV versus standard hydrogen electrode, respectively. The midpoint potential of H1, H8, and H4 remained unchanged in the presence of their respective substrates, veratryl alcohol and Mn(II). The midpoint potential between the ferric and ferrous forms of isozymes H1 and H4 exhibited a pH-dependent change between pH 3.5 and pH 6.5. These results indicate that the reductive half-reaction of the enzymes is the following: ferric peroxidase + le- + H+----ferrous peroxidase. Above pH 6.5, the effect of pH on the midpoint potential is diminished and indicates that an ionization with an apparent pKa equal to approximately 6.6-6.7 occurs in the reduced form of the enzymes. A heme-linked ionization group in the ferrous form of the enzymes was confirmed by studying the effect of pH on the absorption spectra of isozymes H1 and H4. These spectrophotometric pH titration experiments confirmed the electrochemical results indicating pKa values of 6.59 and 6.69 for reduced isozymes H1 and H4, respectively. These results indicate the presence of a heme-linked ionization of an amino acid in the reduced form of the lignin peroxidase isozymes similar to that of other plant peroxidases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call