Abstract

ABSTRACTThe oxidation behavior of γ-TiAl specimens coated with an intermetallic Ti-49Al-34Cr-4Zr layer was investigated at 1000°C under cyclic conditions in laboratory air. The 11 μm thick coating was produced using a combined technique of high power impulse magnetron sputtering and unbalanced magnetron sputtering. The as-deposited coating exhibited a dense layered structure and excellent adhesion to the substrate. The Ti-Al-Cr-Zr coating possessed high oxidation resistance associated with the formation of a thin continuous alumina scale for exposure time periods exceeding 1000 cycles of 1 h dwell time at 1000°C. During the high temperature exposure, the coating being amorphous in the as-deposited condition became crystalline exhibiting different polytypes of Ti(Cr,Al)2Laves phases with Ti probably partially substituted by Zr and Nb. Due to alumina formation and interdiffusion the coating was depleted in aluminum and chromium as well as enriched in titanium. After 1000 cycles at 1000°C, the coating consisted of an outer layer of the hexagonal C14 Laves phase and an inner layer of a probably orthorhombic phase whose structure was not yet determined. In both layers, pores and fine precipitates rich in Zr and Y were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.