Abstract

To identify the intermediates of 4-chlorophenol (4-CP) and bring forward the degradation pathways in the process of catalytic ozonation of 4-CP, 4-CP was ozonated with MnOx/γ-Al2O3/TiO2 (MAT) catalyst, and 4-CP was almost decomposed within 30 min, the mineralization reaching above 94.1% at 100 min. The evident reduction of the degradation with the addition of the radical scavenger tert-butanol (TBA) and the stronger spin-adduct signals of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) indicated that 4-CP was oxidized primarily by hydroxyl radical (·OH). Analysis of GC-MS, HPLC and IC confirmed that aromatic compounds and carboxylic acids were predominant oxidative organic intermediates of 4-CP in catalytic ozonation.The main degradation steps were hydroxylation of 4-CP and the formation of hydroquinone, 4-chlororesorcinol and 4-chlorocatechol. The low molecular weight (LMW) acids, such as malic, malonic, oxalic, acetic, and formic acid, were formed from the further oxidation of the intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call