Abstract

Natural oxidation processes of surface hydrogenated silicon nanocrystallites prepared by pulsed laser ablation under various hydrogen gas pressures are discussed by measuring the vibrational frequency of Si–Hn units on the surface and intensity of Si–O–Si stretching vibration. The surfaces of nanocrystallites are predominantly composed of Si–H bonds and oxidation starts from backbonds of these bonds. The deposited nanocrystal films have a porous secondary structure which depends on the background gas pressure. The oxidation rate observed by infrared absorption measurements depended on this porous secondary structure. The oxidation process is discussed by the correlation between oxidation rate and porous structure of nanocrystal film. We found that Si–O bond density increases with covering the surface of the nanocrystallites during the diffusion of oxygen-related molecules through the void spaces in the porous structure. The surface oxidation of each nanocrystallite is not homogeneous; after the coverage of easy-to-oxidize sites, oxidation continues to gradually progress at the post-coverage stage. We point out that the oxidation process at coverage and post-coverage stages result in different photoluminescence (PL) wavelengths. Adsorption of the water molecule before oxidation also affects the PL wavelength. Defect PL centers which have light emission around 600 and 400 nm are generated during the coverage and post-coverage oxidation processes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.