Abstract

AbstractOxidative biaryl coupling of aryls with different electronic features generally fails. However, this has not been systematically studied via theoretical analysis, and thus, the crucial factor governing coupling efficiency remains unclear. Herein, we propose that the “oxidation potential gap (ΔEox)” is a key parameter in predicting the efficiency of an intramolecular oxidative coupling reaction, with ΔEox defined as a difference in the oxidation potentials of the relevant aromatic rings. Our experimental and computational analyses revealed that the efficiency of an aromatic intramolecular coupling reaction correlates with the activation energy (ΔE≠) of C−C bond formation of the radical cation intermediates. Furthermore, ΔE≠ correlates with ΔEox. Therefore, we demonstrate the tuning of ΔEox by attaching cleavable extra electron‐donating/‐withdrawing groups, enabling the rational synthesis of a phenanthridone skeleton using aromatic rings with an electronic gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.