Abstract
The present investigation revealed that all the reactive dyes were degraded in chlorine mediated electrochemical oxidation. Titanium based dimensionally stable anode (DSA) was used for in situ generation of chlorine in the dye solution. All classes of reactive dyes (100 mg/L) showed a complete color removal at a supporting electrolyte concentration of 1.5 g/L NaCl and 36.1 mA/cm 2 current density. The chemical oxygen demand (COD) and total organic carbon (TOC) removals were from 39.5 to 82.8% and from 11.3 to 44.7%, respectively, for different reactive dyes. It can be concluded in general that the triazine containing higher molecular weight diazo compounds takes more time for complete de-colorization than the mono azo or anthraquinone containing dye compounds. The degradation rate of mixed dye compounds was affected by reaction temperature, current density, NaCl concentration and initial dye concentration. However, the initial pH of the dye solution ranging from 4.3 to 9.4 did not show significant effect on de-colorization. A complete color removal with 73.5% COD and 32.8% TOC removals were obtained for mixed reactive dyes (200 mg/L) at the end of 120 min of electrolysis under the optimum operating conditions of 4 g/L NaCl concentration and 72.2 mA/cm 2 current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.