Abstract

In this study, the ability of ozone to oxidise toluene present in low levels into CO and CO2 was studied. The catalytic ozonation of toluene was carried out in a micro-fixed bed reactor. The oxidation was done in two steps: toluene adsorption on the catalyst followed by sequential ozone desorption. Toluene breakdown by ozone at low temperature and atmospheric pressure was achieved using γ-Al2O3 supported transition metal oxides impregnated with a reduced noble metal. The catalyst Ag–CoOx/γ-Al2O3 efficiently oxidised and transformed toluene into products (52.4% COx yield). This catalyst has a high surface area, more acidic sites, and lattice oxygens for better toluene oxidation. The addition of Ag to the CoOx/γ-Al2O3 catalyst surface improved toluene adsorption on the catalyst surface, resulting in improved product yield, selectivity, and carbon balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.