Abstract

The oxidation behavior of a nickel-based superalloy was investigated from 650 to 1,000 °C for up to 1,000 h in air. Samples with thicknesses ranging from 20 to 500 µm were used to document the evolutions of microstructure and oxide scale. Oxidation products and subsurface evolution of the metal microstructure were characterized by XRD and EDS analyses. Local breakaway was observed after 600 h at 800 °C and after 100 h at 900 °C due to the full consumption of Cr from the alloy. Room temperature tensile tests were performed on aged and pre-oxidized specimens with thicknesses ranging from 20 µm to 500 µm, at 800 °C. The results were compared to tensile tests performed on the as-received metallurgical state. Both size effects due to sample thickness reduction and to sample thickness/pre-oxidation width ratio were examined onto the mechanical behavior. Interestingly, the formation of TCP phases, the oxide layer and the subsequent Cr-depleted subsurface region from either aging or oxidation treatments impairs the mechanical integrity. Bulk and subsurface regions are impacted, especially for tens-of-micrometer thin samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.