Abstract

The present study demonstrates the antiradical efficiency of fisetin, a flavonol widely distributed in fruits and vegetables, by its ability to react with two different free radicals, ABTS +⋅ and DPPH ⋅. The polyphenolic nature of fisetin led us to consider whether it might be oxidised by polyphenol oxidase (PPO), and the results reported show that it can be oxidised by PPO extracted and partially purified from broad bean seeds. The reaction was followed by recording spectral changes with time, with maximal spectral changes being observed at 282 nm (increase in absorbance) and at 362 nm (decrease). The presence of two isosbectic points (at 265 and 304 nm) suggested that only one absorbent product was formed. These spectral changes were not observed in the absence of PPO. The oxidation rate varied with the pH, reaching its highest value at pH 5.5. The fisetin oxidation rate increased in the presence of sodium dodecyl sulfate, an activator of polyphenol oxidase. Maximal activity was obtained at 0.87 mM sodium dodecyl sulfate. The following kinetic parameters were determined: V max=49 μM/min, K m=0.6 mM, V max/ K m=8.2×10 −2 min −1. Flavonol oxidation was inhibited by selective PPO inhibitors such as cinnamic acid (a classical competitive inhibitor, K i=1.4 mM) and 4-hexylresorcinol, which behaved as a slow-binding inhibitor. The results reported show that fisetin oxidation was strictly dependent on the presence of polyphenol oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.