Abstract
The oxidation of Ni nanoparticles supported on highly oriented pyrolytic graphite was investigated under conditions of low exposure to oxygen by methods of scanning tunneling microscopy and spectroscopy. It was found that charge transfer effects at the Ni-C interface influenced the surface activity of the nanoparticles. The O2 dissociation and the Ni oxidation were shown to occur only at the top of the nanoparticle, while the border of the Ni-C interface was the less preferable area for these processes. The O2 dissociation was inhibited, and atomic oxygen diffusion was suppressed in the given nanosystem, due to the decrease in holes concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.