Abstract

UV-vis stopped-flow studies of the reaction of [Ru(NH3)5isn](2+) (isn = isonicotinamide) with excess HOCl at 25 degrees C demonstrate that it proceeds in two time-resolved steps. In the first step [Ru(NH3)5isn](3+) is produced with the rate law -d[Ru(II)]/dt = 2(aK(h)[H(+)] + b[H(+)][Cl(-)] + c[Cl(-)])[HOCl](tot)[Ru(II)]/(K(h) + [H(+)][Cl(-)]). Here, K(h) is 1.3 x 10(-3) M(2) and corresponds to the equilibrium hydrolysis of Cl2, a is (8.34 +/- 0.19) x 10(3) M(-2) s(-1) and represents the acid-assisted reduction of HOCl, b is (4.04 +/- 0.13) x 10(4) M(-1) s(-1) and represents the reduction of Cl2, and c is (6.25 +/- 0.59) x 10(2) s(-1) and represents the Cl(-)-assisted reduction of HOCl. In the second step [Ru(NH3)5isn](3+) undergoes further oxidation to a mixture of products with the rate law -d[Ru(III)]/dt = e[Ru(III)][HOCl]/[H(+)] where e is (1.18 +/- 0.01) x 10(-2) s(-1). This step is assigned a mechanism with Cl(+) transfer from HOCl to [Ru(III)(NH3)4(NH2)isn](2+) occurring in the rate-limiting step. These results underline the resistance of HOCl to act as a simple outer-sphere one-electron oxidant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call