Abstract

Plasmids carrying cloned segments of the frd operon of Escherichia coli have been used in genetic complementation studies to identify two independent mutants defective in the frdD gene, which encodes the hydrophobic FrdD polypeptide of the fumarate reductase complex. Mutations in the frdA and frdB genes have also been mapped by this technique. One of the FrdD peptide mutants, DW109 (frdD-109), showed that fumarate reductase was not as tightly bound to the membrane in this mutant. In addition, the mutation in the FrdD peptide caused an almost total loss of the ability of the enzyme to oxidize either menaquinol-6, a physiological donor for fumarate reduction, or reduced benzyl viologen. However, the mutation did not impair the ability of the membrane-bound fumarate reductase complex to function with succinate as substrate, as evidenced by unchanged turnover numbers for phenazine methosulfate and 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone (a quinone analogue) reductase activities. These data establish the essential role of the FrdD polypeptide both in the interaction of the enzyme with reduced menaquinone and thus in anaerobic respiration with fumarate as electron acceptor, and in binding the enzyme to the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.