Abstract

Mitochondria isolated from normal rat liver and AS-30D hepatoma were concurrently evaluated with regard to their bioenergetic and metabolic properties. AS-30D mitochondria oxidized many NAD-linked respiratory substrates at rates 1.5-4 times faster than those from liver, a fact which contributes to their diminished membrane depolarization on conversion from state 4 to state 3 respiration. AS-30D mitochondria exhibited no signs of a "truncated" Krebs cycle, nor did they oxidize malate preferentially based upon its origin in the cytosol or the mitochondrial matrix. In addition, β-oxidation in AS-30D mitochoadria was not sufficient to suppress respiratory CO 2 production and induce pyruvate carboxylation to the extent observed in liver. Finally, AS-30D mitochondria were able to oxidize externally generated NADH in a reconstituted system, but in a manner independent of the transmembrane electrical potential (Δ Ψ), suggesting that the malate-aspartate shuttle is not operable in vivo. This fact may necessitate the adaptations tumor cells make to reoxidize cytosolic NADH through glycolysis even in the presence of adequate oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.