Abstract

The cleaning of cellulosic hemodialysis membrane Cuprophan and model materials (glass; polystyrene and polypropylene, as such and surface-oxidized), conditioned by adsorption of blood plasma proteins (HSA, fibrinogen, IgG) was investigated in vitro. Sodium hypochlorite (NaClO) and Renalin, a product containing hydrogen peroxide and peroxyacetic acid, were used as cleaning reagents. X-ray photoelectron spectroscopy and the use of radiolabeled fibrinogen demonstrated the presence of varying amounts of a polypeptidic residue, with sulfur brought to a high oxidation stage (sulfonate-like). The trends were the same for the three proteins regarding the effectiveness of the oxidizer and the influence of the surface properties. NaClO was much more effective than Renalin to remove the adsorbed proteins. The proteins adsorbed on Cuprophan were more sensitive to the oxidizers, when compared with proteins adsorbed on other materials. This may be due to both the lower protein-surface affinity, as indicated by radiochemical measurements, and the sensitivity of the material itself to the oxidizer, as revealed by weight loss measurements. These results support the attribution of hemocompatibility improvement after regeneration of Cuprophan with Renalin to the masking of the activating surface by a residue from previously adsorbed proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.