Abstract

We observed a close correlation between the inhibition of photosystem II and the oxidation of polyphenols during an acute oxidative stress in sunflower leaf discs. To assess the physiological significance of polyphenols as antioxidants in planta, we compared the kinetics of polyphenols oxidation with the inhibition of the photosynthetic apparatus in sunflower leaf discs exposed to an acute photooxidative stress. Illumination of leaf discs in the presence of methyl viologen induced a rapid and large non-photochemical quenching of chlorophyll-a fluorescence, which was reversed after 4h of treatment as indicated by the ≈ 30% increases of the steady-state (Fs) and maximal (Fm') levels of chlorophyll-a fluorescence relative to the first hour of treatment. This event coincided with the accelerated decreases of the maximum (Fv/Fm) and effective (∆F/Fm') quantum yields of photosystem II, and also with the beginning of polyphenols oxidation, estimated by the UV absorbance of methanolic leaf extracts, and supported by the Folin-Ciocalteu method and cyclic voltammetry. The decreases of Fv/Fm and the concentrations of reducing polyphenols were highly correlated (R2 = 0.877) during the experiment. Coherent with the decrease of UV absorbance of methanolic extracts, polyphenol oxidation resulted in a marked decrease of UV absorbance of leaf epidermis. Also, polymerization of oxidized polyphenols caused the accumulation of brown pigments in the MV-treated leaf discs, decreasing leaf reflectance, especially at 550 and 740nm. Fluorescence intensities were also decreased during the MV treatment. Interestingly, the emission fluorescence ratio F740/F684 (excitation at 550nm) decreased similarly to Fv/Fm (R2 = 0.981) due to the brown pigments. Moreover, the excitation fluorescence ratio F484/F680 (emission at 740nm) was linearly correlated (R2 = 0.957) to ∆F/Fm', indicating a decrease of efficiency of energy transfer between the antenna pigments to the photosystem II reaction center during the oxidative stress. These results support the view that polyphenols can be effective antioxidants protecting the plants against reactive oxygen species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.