Abstract

Lignin is considered as a promising substitute for fossil resources, but its efficient conversion remains a huge challenge due to the structural complexity and immiscibility with typical solvents. Herein, a series of surfactant-free microemulsion reactors comprised of n-octane, water and n-propanol were designed and their corresponding phase behaviors alongside their ability to intensify oxidative depolymerization of lignin were explored. Experimental results show that the phenolic monomer yield improves substantially (40–500 wt%) by comparison with processes performed in a single solvent. Detailed characterizations also suggest that the above intensification is rationalized by the solubilization effect of microemulsion system and directional aggregation of lignin at the microemulsion interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call