Abstract

1. This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO(-)) released upon the decomposition of Angeli's salt. 2. Our results show that copper ions (from CuSO(4)) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1 - 100 microM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). 3. Experiments with ascorbate (1 mM), which reduces Cu(2+) ions to Cu(+), and with the Cu(2+) chelators, EDTA and cuprizone, and the Cu(+) chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. 4. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO(4) in catalyzing the formation of nitric oxide from nitroxyl, while FeSO(4), FeCl(3), MnCl(2), and ZnSO(4) were inactive. 5. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml(-1), respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml(-1)) and tyrosinase (250 u ml(-1)) were inactive. 6. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.