Abstract

The electrochemical oxidation of the natural antioxidant 2,3-dehydrosilybin (DHS) was investigated in acetonitrile. The spectral changes during two electron and two proton oxidation registered by in situ IR spectroelectrochemistry show that the electron transfer is followed by a subsequent chemical reaction with traces of water. A benzofuranone derivative (BF) is formed by ECEC (electron transfer-chemical reaction-electron transfer-chemical reaction) process at the potential of the first oxidation wave. A minor difference in the chemical structures of flavonolignans DHS and silybin, the presence of a double bond between atoms C-2 and C-3 in the DHS molecule, causes the formation of completely different oxidation products. BF was for the first time identified as the product of the oxidation of flavonolignan DHS. Its formation was proved by electroanalytical, chromatographic, and spectroelectrochemical techniques. Molecular orbital calculations support the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.