Abstract

Oxidation of sputter-deposited nanocrystalline Mo–Si–N (MoSi2.2N2.5) coatings in oxygen–water vapor atmosphere has been studied in the temperature range 400–850 °C. In addition, the oxidation properties of nanolayered Mo–Si–N/SiC coatings at 700 °C were studied and compared to those of single-layer coatings of both components. No pest disintegration was observed in Mo–Si–N up to 200 h of oxidation. A preexponential rate constant of (3.7 ± 0.5) × 109 (1015 atoms/cm2)2/h and activation energy 1.03 ± 0.02 eV were determined from an Arrhenius plot for parabolic oxygen buildup on Mo–Si–N. Up to 20% less oxygen was detected in the oxidized nanolayered coatings compared to either of the components as a single layer, indicating an improvement in oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.