Abstract

The oxidation behavior of Al-rich, metastable mechanically alloyed powders in the Al–Ti binary system has been examined in the context of their potential application in high-energy-density materials. Scanning calorimetry and thermogravimetric analysis in an oxygen atmosphere up to 1500°C have been performed on powders, synthesized with compositions ranging from Al0.95Ti0.05 to Al0.75Ti0.25. Oxidation proceeds in three distinguishable steps, similar to the oxidation steps observed for pure aluminum. The steps become less pronounced with increasing Ti concentration. For both the first and second oxidation steps, the apparent activation energies are close to 400 kJ/mol. Partially oxidized material was recovered from intermediate temperatures for quantitative phase analysis by X-ray diffraction, Al2O3 and TiO2 are the main oxidation products. Similarly to pure aluminum, metastable γ-alumina is present at temperatures below ∼ 1000°C, suggesting that the stepwise oxidation is related to phase transitions of the alumina in the oxide scale. At temperatures above 1300°C, oxidation follows melt formation in the binary Al–Ti system, as the aluminum component oxidizes selectively, leaving a titanium-rich metallic residue. No correlation was observed between the oxidation and melting of aluminum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.