Abstract

In aqueous oxidative processes with ozone (O3), chlorine, or chloramine, naturally occurring iodide (I-) can easily be oxidized to hypoiodous acid (HOI) which can react with natural organic matter (NOM) or be further oxidized to iodate (IO3-). Such processes can be of importance for the geochemistry of iodine and for the fate of iodine in industrial processes (drinking water treatment, aquacultures). Whereas IO3- is the desired sink for iodine in drinking waters, iodoorganic compounds (especially iodoform, CHI3) are problematic due to their taste and odor. To assess the sink for iodine during oxidation of natural waters, we determined the kinetics of several oxidation reactions of HOI. Ozone, chlorine, and chloramine have been tested as potential oxidants. Ozone oxidized both HOI and hypoiodite (OI-) (kO3+HOI = 3.6 × 104 M-1 s-1; kO3+OI− = 1.6 × 106 M-1 s-1) in a fast reaction. Chlorine species oxidized HOI by a combination of second- and third-order reactions (k‘ ‘HOCl+HOI = 8.2 M-1 s-1; k‘ ‘‘HOCl+HOI = ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.