Abstract

Gaseous elemental mercury (GEM; Hg0(g)) was oxidized by ozone and secondary hydroxyl radicals generated by the chemistry associated with the formation of secondary organic aerosols. The reaction was investigated in a 9-m3 Teflon® batch reactor.The losses of GEM in ozone-only experiments compared well with numerical model predictions based on published reaction rates, and a second order rate analysis gave a reaction rate of (7.4 ± 0.5) × 10−19 cm3 molecules−1 s−1, which was statistically indistinct from recent publications. Furthermore, the net oxidation of GEM observed in the SOA reaction system agreed well with a numerical model based on the GEM-ozone reaction rate determined in this study and a published GEM-OH oxidation rate.Recent modeling studies of mercury atmospheric cycling have found that use of laboratory-based GEM-ozone reaction rate coefficients caused overestimation of GEM oxidation, while theoretical studies cast doubt over the viability of the GEM-ozone oxidation reaction in the real atmosphere. The results presented here suggest that the reaction is viable in the atmosphere and that recent published reaction rates for GEM and ozone are pertinent for use in atmospheric models. An average of GEM-ozone rates determined during this and recent studies was 6.9 ± 0.9 × 10−19 cm3 molecules−1 s−1. This value is recommended for use in future modeling studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.