Abstract

ABSTRACT Dye wastewater is a kind of refractory organic wastewater. Fenton coupled with micro-nano bubbles (MNBs+FT) was used for the degradation of Congo red (CR), aiming at simplifying the organic pollutants degradation process and reducing the cost of the process. The optimum condition of Fenton alone, the outlet pressure of the cavitation process and different combinations on the degradation of CR dye wastewater were discussed in this study. The results showed that the degradation of CR (100 mg/L) could reach 94.4% by using the MNBs+FT at the pH of 7, which was 72% higher than that using Fenton oxidation alone and 79% higher than that using MNBs alone. Based on the same degradation efficiency, the traditional Fenton process alone required 8 times the dose of oxidants of these combination systems, and the synergy coefficient of MNBs+FT was up to 2.44. ESR analysis indicated that ·OH was the predominant active species during the degradation of CR and MNBs+FT improved the utilization efficiency of H2O2 and produced more ·OH. Besides, the MNBs+FT could extend the pH range of the high-efficiency oxidation reaction, and it could also keep a high degradation rate under neutral conditions, which eliminated the process of adjusting the pH and reduced the anti-corrosion requirements of the equipment. According to the economic analysis results, the total cost of treatment for the MNBs/FT was about 13% of the cost of only the Fenton process. This study provides a reference for the application of MNBs+FT systems in full-scale dye wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.