Abstract

The adsorption of a gaseous (MoO3)3 cluster on a graphene ribbon and subsequent generation of COx was studied by density functional theory (DFT) method and compared with experimental results. The (MoO3)n -graphene complexes show interesting magnetic properties and potentials for nanodevices. A comprehensive analysis of plausible reaction mechanisms of CO and CO2 generation was conducted. Multiple routes to CO and CO2 formation were identified. The (MoO3)3 cluster shows negative catalytic effect for CO formation but does not increase the energy barrier for CO2 formation. CO2 is the primary product of the gaseous MoO3-carbon reaction. Mechanism of the homogenous MoO3 - CO reaction was studied and showed relatively low energy barriers. The DFT result accounts for key experimental observations of activation energy and product selectivity. The combined theoretical and experimental approach contributes to the understanding of the mechanism of reactions between carbon and metal oxide clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.