Abstract

The extensive use of bromophenols (BrPs) in industrial products leads to their occurrence in freshwater environments. This study explored the oxidation kinetics of several BrPs (i.e., 2-BrP, 3-BrP, 4-BrP, 2,4-diBrP, and 2,6-diBrP) and potential formation of brominated polymeric products of concern during water treatment with potassium permanganate [Mn(VII)]. These BrPs exhibited appreciable reactivity toward Mn(VII) with the maxima of second-order rate constants (kMn(VII)) at pH near their pKa values, producing bell-shaped pH-rate profiles. The unusual pH-dependency of kMn(VII) was reasonably explained by a tentative reaction model, where the formation of an intermediate between Mn(VII) and dissociated BrP was likely involved. A novel and powerful precursor ion scan (PIS) approach was used for selective detection of brominated oxidation products by liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry. Results showed that brominated dimeric products such as hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and hydroxylated polybrominated biphenyls (OH-PBBs) were readily produced. For instance, 2'-OH-BDE-68, one of the most naturally abundant OH-PBDEs, could be formed at a relatively high yield possibly via the coupling between bromophenoxyl radicals generated from the one-electron oxidation of 2,4-diBrP by Mn(VII). Given the altered or enhanced toxicological effects of these brominated polymeric products compared to the BrP precursors, it is important to better understand their reactivity and fate before Mn(VII) is applied by water utilities for the oxidative treatment of BrP-containing waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call