Abstract

The heat-activated persulfate oxidation of bisphenol A (BPA), a representative endocrine disrupting compound, was investigated with respect to the effect of several process variables on degradation rates. The activation temperature appears to be the single most important parameter, i.e. a temperature increase from 40 to 70 °C results in an 80-fold rate increase. Regarding initial BPA concentration, the reaction follows a pseudo-first order rate expression, where the kinetic constant decreases from 11.5 10−2 to 3.5 10−2 min−1 when BPA concentration increases from 110 to 440 μg/L. Reactions in actual water matrices, such as bottled water and secondary treated wastewater, are slower than in pure water since various organic/inorganic water constituents compete with BPA for being oxidized by the reactive oxidizing species; this was confirmed with experiments in pure water spiked with humic acid or bicarbonate. Interestingly though, the presence of chloride seems to promote BPA degradation. Furthermore, degradation is favored at near-neutral pH and increased sodium persulfate (SPS) concentrations.Experiments at an increased BPA concentration of 20 mg/L were performed to identify transformation by-products (TBPs), as well as assess the mineralization and toxicity of the treated samples. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) revealed the formation of eleven TBPs of BPA and plausible pathways including hydroxylation, oxidation, cleavage and oligomerization reactions are proposed. Mineralization occurs slower than BPA degradation, while the toxicity to marine bacteria Vibrio fischeri increases during the early stages of the reaction but it progressively decreases thereafter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call