Abstract

Benzophenone-3 (BP-3) is used in a wide range of personal care products and plastics to resist ultraviolet light, which has aroused considerable public concern due to its endocrine-disrupting effects. In this work, we systematically investigated the chemical oxidation process of BP-3 by KMnO4. The influences of several factors, such as pH, oxidant dose, temperature, coexisting water constituents, and water matrices, on BP-3 degradation efficiency were evaluated. The removal rate of 10 μM BP-3 could reach 91.3% in 2 h under the conditions of pH = 8.0, [BP-3]0:[KMnO4]0 = 1:20, and T = 25 °C, with the observed rate constant (kobs) value of 0.0202 min-1. The presence of typical anions (Cl-, NO3-, SO42-) and HA could slightly increase BP-3 removal, while HCO3- caused a relatively significant promotion of BP-3 degradation. On the basis of mass spectrometry and theoretical calculations, hydroxylation, direct oxidation, and carbon-carbon bridge bond cleavage were mainly involved in the oxidation process. Toxicity assessment revealed that the acute and chronic toxicities were reduced significantly, which suggested KMnO4 is a promising technique for BP-3 removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.