Abstract

Rate constants and product ion branching fractions are reported for the reactions of CH3+, C2H5+, s-C3H7+, s-C4H9+, t-C4H9+, and t-C5H11+ with O2 and O3 at 300 K in a variable-temperature selected-ion flow tube (VT-SIFT). The reaction rate constant for CH3+ with O3 is large and approximately equal to the thermal energy capture rate constant given by the Su−Chesnavich equation. The C2H5+, s-C3H7+, and s-C4H9+ ions are somewhat less reactive, reacting at approximately 7−46% of the thermal capture rate. The HCO+ and C2H3O+ ions are the major products in these reactions. The t-C4H9+ and t-C5H11+ ions are found to be unreactive, with rate constants <5 × 10-12 cm3 s-1, which is the present detection limit of our apparatus using this ozone source. Ozone is a singlet in its ground state, and ab initio calculations at the B3LYP/6-31G(d) level of theory indicate that reactant complexes can be formed, decreasing in stability with the size of alkyl chains attached to the cationic carbon atom. The decreasing reactivit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.