Abstract
Leukotriene B4 (LTB4), a potent chemoattractant for leukocytes, is catabolized by human neutrophils via omega-oxidation. Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega), a conclusion supported by our finding of the reversal of carbon monoxide inhibition by 450 nm light and by competitive inhibition studies. The oxidation of 20-oxo-LTB4 to 20-carboxy-LTB4 is also catalyzed by microsomes fortified with 1 mM NAD+, and this activity is not affected by cytochrome P-450LTB omega inhibitors. The evidence is compatible with involvement of a disulfiram-insensitive aldehyde dehydrogenase in this second oxidation pathway. Interaction of the two pathways is evidenced by facilitation of NADPH-dependent oxidation of 20-OH-LTB4 by the addition of NAD+. This synergism may be explained by removal of the aldehyde intermediate by the NAD(+)-dependent aldehyde dehydrogenase. Taken together with the finding that the NAD(+)-dependent activity is severalfold higher than the NADPH-dependent one, the dehydrogenase may be important in the oxidation of 20-OH-LTB4 to 20-carboxy-LTB4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.