Abstract

Micron-sized aluminum powders were heated in carbon dioxide atmosphere through differential scanning calorimetry (DSC) method in this work. Aluminum powders were oxidized into four distinct stages from room temperature to 1500°C. Stage I, amorphous alumina shell turns to γ-Al2O3 phase from room temperature to 620°C. Stage II, accompany with the aluminum core melting, alumina shell becomes thicker and fragile at the temperature around 667°C which is the melting point of aluminum. Stage III, in the temperature range of 690-1150°C, alumina shell was broken partially because of the inside pressure. Liquid aluminum spurts out through the weak point which becomes cracks on the surface just like volcano eruption and then oxidized by CO2 while the temperature increased from 700°C to 900°C. Stage IV, alumina changes to stable α-Al2O3. From what was presented above, a mechanism of micron-sized aluminum particle oxidation in CO2 under gradually increasing temperature condition was proposed as “eruption model”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call