Abstract

Micron-sized aluminum (Al) powders are extensively added to energy-containing materials to enhance the overall reactivity of the materials. However, low oxidation efficiency and energy release limit the practical application of Al powders. Polyvinylidene fluoride (PVDF), the most common fluoropolymer, can easily react with Al to form aluminum fluoride (AlF3), thus promoting the oxidation of Al powders. In this paper, core-shell structured Al@PVDF powders were synthesized by solvent/non-solvent method. Thermal analysis results show that the weight and exothermic enthalpy of Al@PVDF powders are 166.10% and 11,976 J/g, which are superior to pure Al powders (140.06%, 6560 J/g). A detailed description of the oxidation mechanisms involved is provided. Furthermore, constant volume pressure results indicate that Al@PVDF powders have outstanding pressure output ability in the environment of 3 MPa oxygen. The study provides a valuable reference for the application of Al powders in energetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.