Abstract
A proximity-enabled protein cross-linking strategy with additional spatiotemporal control is highly desirable. Here, we report an oxidation-induced protein cross-linking strategy involving the incorporation of a vinyl thioether group into proteins in both Escherichia coli and mammalian cells via genetic code expansion. We demonstrated that vinyl thioether can be selectively induced by exogenously added oxidant or by reactive oxygen species from the cellular environment, as well as by photocatalysts, and converted into a Michael acceptor, enabling fluorescence labeling and protein cross-linking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.