Abstract

Organic-inorganic hybrid thermoelectric (TE) materials have attracted tremendous interest for harvesting waste heat energy. Due to their mechanical flexibility, inorganic-organic hybrid TE materials are considered to be promising candidates for flexible energy harvesting devices. In this work, enhanced TE properties of Tellurium (Te) nanowires (NWs)- poly (3-hexylthiophene-2, 5-diyl) (P3HT) hybrid materials are reported by improving the charge transport at interfacial layer mediated via controlled oxidation. A power factor of ≈9.8µW(mK2)-1 is obtained at room temperature for oxidized P3HT-TeNWs hybrid materials, which increases to ≈64.8µW(mK2)-1 upon control of TeNWs oxidation. This value is sevenfold higher compared to P3HT-TeNWs-based hybrid materials reported in the literature. MD simulation reveals that oxidation-free TeNWs demonstrate better templating for P3HT polymer compared to oxidized TeNWs. The Kang-Snyder model is used to study the charge transport in these hybrid materials. A large σE0 value is obtained which is related to better templating of P3HT on oxygen-free TeNWs. This work provides evidence that oxidation control of TeNWs is critical for better interface-driven charge transport, which enhances the thermoelectric properties of TeNWs-P3HT hybrid materials. This work provides a new avenue to improve the thermoelectric properties of a new class of hybrid thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call