Abstract

Abstract This paper examines and compares the microstructure and oxidation behaviour of CoNiCrAlY coatings manufactured by the APS, HVOF and CGDS deposition techniques. The coatings microstructural features were characterized by means of SEM and XRD analyses. Coating samples were then subjected to isothermal heat treatments at 1000 °C. Oxide growth rates were obtained from a series of mass gain measurements while oxide scale compositions were determined from SEM, XRD and EDS analyses. Results obtained in this study show that the as-sprayed CGDS and HVOF coatings exhibit similar microstructures, whereas the APS coating features high levels of visible defects and oxide content. Oxidation experiments revealed low oxide growth rates for both the CGDS and HVOF coatings as a result of low porosity and oxide content. The oxide scale on the CGDS and HVOF coatings after 100 h of oxidation were composed mainly of alumina without the presence of detrimental fast-growing mixed oxides. The presence of Cr 2 O 3 and dispersed NiO was however also observed for the HVOF coating. As expected, the APS coating featured the onset of mixed oxides in the early stages of oxidation. From these results, it appears that potential improvements to the bond coat oxidation behaviour can be achieved using low-temperature processing methods such as CGDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call