Abstract
C/C–SiC composites are considered to be strong candidates for the new generation of high-speed train brake discs. To achieve a better application, it is necessary to improve understanding of the oxidation behaviour of C/C–SiC brake discs after a full-scale bench test rig. In this study, full-scale braking bench tests for C/C–SiC self-mated brake pairs were conducted under a braking speed of 350–420 km/h and a braking pressure of 17–28 kN. Moreover, the oxidation behaviour and mechanisms of the C/C–SiC brake discs during the practical braking process were investigated. The results indicate that the oxidation behaviour is highly dependent on the friction surface region of the C/C–SiC brake disc owing to the distribution of microcracks, the formation of friction films, the difference in temperature, and the contact content with O 2 . Specifically, the oxidation depths of the friction layer on the inner circumferential surface, middle friction surface, and outer circumferential surface were 278.3, 252.1, and 359.9 μm, respectively. Furthermore, the oxidation reaction preferentially occurs in the active area of the C fibre and pyrolytic carbon (PyC) during the braking process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.