Abstract

• Fe/Sn containing alloys were found to be more sensitive to the oxidizing atmosphere than the Nb containing alloys. • Zry-3 and Zr-1Nb are the most resistant to breakaway oxidation and have the slowest oxidation kinetics after breakaway. • The diffusing species was confirmed to likely be oxygen anions; diffusing through the oxide to the underlying metal. The Transient Reactor Test (TREAT) facility at the Idaho National Laboratory currently utilizes a legacy Zircaloy-3 cladding, which is no longer commercially available. TREAT is air cooled and routinely operates at temperatures well above that of traditional reactor designs. This study investigates the oxidation behavior of pure zirconium and its alloys (Zircaloy-3, Zircaloy-4, Zr-1Nb, Zr-2.5Nb) in Ar+20%O 2 and N 2 +20%O 2 atmospheres at temperatures ranging from 400–800 °C to determine which alloy should be implemented as TREAT's cladding. While the oxidation behavior of zirconium based cladding materials has been extensively documented, this study focuses on direct comparison between legacy Zircaloy-3 and contemporary alloys using a flat plate geometry and similar conditions seen at the TREAT facility. In this work, thermogravimetric analysis was used to measure both steady state and breakaway oxidation, which was then used to calculate oxidation rate constants and activation energies of each material. Oxide thickness was evaluated through microscopy of oxidized specimen cross sections. The Zircaloy-3 and Zr-1Nb alloys were found to be the most resistant to oxidation under the conditions of this study, whereas the Zr-2.5Nb alloy was found to be the most susceptible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.