Abstract

The oxidation of CoCrAlY coatings, which are prepared by atmospheric plasma spray, additionally aluminized by electric beam vacuum deposition, and finally modified by high-current pulsed electron beam irradiation, is investigated. Meanwhile, the isothermal oxidation performance of untreated coating at 1050 °C is compared to the modified coating. The surface microstructure, cross-sectional microstructure, and phase transformation of the coatings are characterized by means of scanning electron microscope and energy-dispersive spectrometry (EDS). Results reveal that the thermally grown oxide (TGO) in untreated coatings is composed of two distinct layers: a large amount of mixed gray oxides in the outer layer and a thin Al2O3 film in the inner layer. In comparison, modified coatings exhibit single TGO layer and homogeneous TGO composition. The EDS line scanning result shows that TGO is primarily comprised of α-Al2O3. These results display that the modified coatings have a much higher oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.