Abstract
In this study, high temperature (T>500oC) oxidation behavior of two commercial Ni-base alloys and two experimental alloys, all containing more than 10% Molybdenum, is investigated. Experimental alloys were prepared from high purity materials using an arc-melting furnace under a protective environment. During tests, samples were exposed to the stagnant air environment of a high temperature furnace for predetermined times. Extent of oxidation was determined from sample mass change measurements as well as morphological and chemical analyses of the oxidation products. For analyses, a scanning electron microscope (SEM) equipped with backscattered electron (BE) and energy dispersive spectroscopic (EDS) detectors was used. Crystalline phases formed in the product scales over the alloy samples were identified by an x-ray diffractometer (XRD). Preliminary results indicate that although Mo in the alloy prevents the development of a protective oxide scale at the alloy surface, presence of alloying elements such as Cr or Al can decrease this negative effect of Mo on oxide scale formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.