Abstract

Biodegradable polymers are widely used in biomedical and tissue engineering applications due to their biocompatibility and hydrolysis properties in the body. However, their low surface energy and lack of functional groups to interact with the cellular environment have limited their applications for in vivo studies. Ion beam modification is a convenient method for improving the surface properties of polymeric materials for functional biomedical applications. In the work described here, vacuum arc metal ion implantation was used to modify the composition of the near-surface region of three kinds of polymers-poly(L-lactide), poly(D, L-lactide-co-glycolide), and poly(L-lactide/caprolactone)-chosen as representative of biodegradable polymers. X-ray photoelectron spectroscopy analysis was used to characterize the chemical effects of these polymers after implantation with C and with Au, and the results were compared with untreated control samples. We find that oxidation behavior is brought about for certain implantation fluences, resulting in improved surface hydrophilicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.