Abstract
Isothermal oxidation behavior of a refractory high-entropy NbCrMo0.5Ta0.5TiZr alloy was studied during heating at 1273 K for 100 h in flowing air. Continuous weight gain occurred during oxidation, and the time dependence of the weight gain per unit surface area was described by a parabolic dependence with the time exponent n = 0.6. X-ray diffraction and scanning electron microscopy accompanied by energy-dispersive X-ray spectroscopy showed that the continuous oxide scale was made of complex oxides and only local (on the submicron levels) redistribution of the alloying elements occurred during oxidation. The alloy has a better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb–Si–Al–Ti and Nb–Si–Mo alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.