Abstract
The degradation of Ti-based coatings is known to be due to the formation of titanium oxide (TiO 2) at their surfaces. In this study, wear and thermal oxidation behaviors of various magnetron sputtered Ti-based thin films were studied after static oxidation and sliding wear. The oxidized surfaces after the static oxidation and the wear debris generated from pin-on-disc wear tests with alumina ball were characterized to identify the compounds, particularly titanium oxides, to gain a better understanding of the tribochemical reactions. The coatings that were examined include TiN, TiCN (N rich), TiCN (C rich), TiAlN, AlTiN, TiSiN, and TiCNO thin films. These coatings were characterized using Raman spectroscopy, scanning electron microscopy, and X-Ray diffractometer. The results show that TiSiN and AlTiN have the highest oxidation resistance, comparing with other coatings. As for the analyses of wear debris, all of the Ti-based coatings are worn by the mechanism of forming TiO 2, except AlTiN. AlTiN is worn by ploughing wear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.