Abstract

Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M 2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron–positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M 2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call