Abstract

Solid solutions of (AlxCr1-x)2O3 and (FexCr1-x)2O3 are predominant compounds containing Cr in solid waste and are frequently formed during thermal treatment of solid waste. (AlxCr1-x)2O3 and (FexCr1-x)2O3 have superior thermomechanical properties and excellent corrosion resistance. However, oxidation and reduction reactions of the Cr in these solid solutions seriously affect their chemical stabilities and the environmental risks posed by the final products. In this study, first the reaction behaviors of (AlxCr1-x)2O3 and (FexCr1-x)2O3 at high temperatures were analyzed and whether the incorporation of Cr(III) in solid solutions can prevent Cr(III) from being oxidized was determined. Both (AlxCr1-x)2O3 and (FexCr1-x)2O3 without the presence of CaO exhibit good thermal stability at high temperatures. However, the participation of CaO induces Cr(III) oxidation in (AlxCr1-x)2O3 and (FexCr1-x)2O3 at 500–1000 °C. Cr(III) oxidation in these solid solutions is accompanied by the formation of CaCrO4 and Fe2O3 or Al2O3. Al2O3 combines with CaCrO4 and further forms a more stable Cr(VI) compound (e.g., Ca4Al6O12CrO4). While Fe2O3 combines with CaCrO4 at 1000–1200 °C. This is accompanied by the formation of CaCr2O4 and CaFe2O4, which effectively promotes the reduction of Cr(VI). Moreover, part of the CaCr2O4 transforms into a more stable phase (i.e., FeCr2O4) at 1200–1300 °C. Although the incorporation of Cr(III) in these solid solutions cannot prevent Cr(III) oxidation completely at high temperatures, the Cr(III) oxidation in these solid solutions is still suppressed compared with Cr2O3. The results of this study provide further insights into the oxidation and reduction reactions of Cr-hosting compounds during thermal treatment of solid waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call