Abstract

The fermentation mechanism of the simultaneous production of D-xylonic acid and xylitol from D-xylose by Pichia quercuum was studied by using a cell-free enzyme preparation. Nicotinamide adenine dinucleotide phosphate (NADP)-dependent D-xylose dehydrogenase activity and NADP-dependent D-xylose reductase activity were detected, and the oxido-reduction reaction of D-xylose was able to couple through regeneration of NADP and NADPH to produce D-xylonic acid and xylitol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call