Abstract

The toxicity and mobility of antimony (Sb) are strongly influenced by the redox transformation of widely spread 2-line ferrihydrite (Fh) in natural soils and sediments. This study investigated the transformation and redistribution of adsorbed antimonite (Sb(III)) during Fe(II)-catalyzed recrystallization of Fh under anaerobic conditions. X-ray diffraction (XRD), transmission electron microscopy (TEM), and synchrotron based X-ray absorption spectroscopy (XAS) were utilized to characterize the mineralogy and morphology of generated minerals as well as the speciation of Sb and Fe. Chemical analysis and Sb LIII-edge XANES spectra demonstrated that a great part of Sb(III) (80%-90%) was oxidized to Sb(V) by reactive oxygen species (ROS) during the Fe(II)-catalyzed transformation of Fh. Chemical extraction results showed that the mobility of Sb was significantly reduced with 50%-70% of initially adsorbed Sb(III) transformed to phosphate-unextractable phase. Antimony K-edge EXAFS analysis showed the SbO6 octahedra were incorporated into secondary minerals by substituting the Fe atoms. Our findings shed new light on the understanding of the geochemical behavior of Sb(III) under anoxic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.