Abstract

BackgroundAfter clinical introduction in 2005, sequentially annealed, highly cross-linked polyethylene (SA HXLPE) was studied for retrievals with short implantation times; however, long-term follow-ups are lacking. The objective of this study was to examine and compare the revision reasons, damage mechanisms, and oxidation indices of SA HXLPE and conventional gamma inert–sterilized (Gamma Inert) ultra-high-molecular-weight polyethylene tibial inserts implanted for >5 years. MethodsThere were 74 total knee arthroplasty tibial inserts (46 SA HXLPEs, 28 Gamma Inerts) implanted for >5 years (mean 7 ± 2 years) retrieved as part of a multicenter retrieval program. Cruciate-retaining implants comprised 44% of the SA HXLPEs and 14% of the Gamma Inerts. Patient factors and revision reasons were collected from revision operating notes. A semiquantitative scoring method was used to assess surface damage mechanisms. Oxidation was measured using Fourier transform infrared microscopy according to American Society for Testing and Materials 2102. Differences between cohorts were assessed with Mann–Whitney U-tests. ResultsLoosening (Gamma Inert: 17 of 28, SA HXLPE: 15 of 46) and instability (Gamma Inert: 6 of 28, SA HXLPE: 15 of 46) were the most common revision reasons for both cohorts. The most prevalent surface damage mechanisms were burnishing, pitting, and scratching, with burnishing of the condyles being higher in Gamma Inert components (P = .022). Mean oxidation was higher in the SA HXLPE inserts at the articulating surface (P = .002) and anterior-posterior faces (P = .023). No difference was observed at the backside surface (P = .060). ConclusionsRevision reasons and surface damage mechanisms were comparable in the Gamma Inert and SA cohorts. Further studies are needed to continue to assess the in vivo damage and clinical relevance, if any, of oxidation in SA HXLPE over longer implantation times, particularly for implants implanted for more than 10 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.