Abstract

Reactive oxygen species (ROS: superoxide radical, O 2 −; hydrogen peroxide, H 2O 2; hydroxyl radical, OH), which arise from the univalent reduction of dioxygen are formed in mitochondria. We summarize here results which indicate that ROS, and also the radical nitrogen monoxide (‘nitric oxide’, NO), act as physiological modulators of some mitochondrial functions, but may also damage mitochondria. Hydrogen peroxide, which originates in mitochondria predominantly from the dismutation of superoxide, causes oxidation of mitochondrial pyridine nucleotides and thereby stimulates a specific Ca 2+ release from intact mitochondria. This release is prevented by cyclosporin A (CSA). Hydrogen peroxide thus contributes to the maintenance of cellular Ca 2+ homeostasis. A stimulation of mitochondrial ROS production followed by an enhanced Ca 2+ release and re-uptake (Ca 2+ ‘cycling’) by mitochondria causes apoptosis and necrosis, and contributes to hypoxia/reperfusion injury. These kinds of cell injury can be attenuated at the mitochondrial level by CSA. When ROS are produced in excessive amounts in mitochondria nucleic acids, proteins, and lipids are extensively modified by oxidation. Physiological (sub-micromolar) concentrations of NO potently and reversibly deenergize mitochondria at oxygen tensions that prevail in cells by transiently binding to cytochrome oxidase. This is paralleled by mitochondrial Ca 2+ release and uptake. Higher NO concentrations or prolonged exposure of cells to NO causes their death. It is concluded that ROS and NO are important physiological reactants in mitochondria and become toxic only when present in excessive amounts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.