Abstract
Full-length (67 kDa) immunoreactive estrogen receptor (ER) extracted from a third of untreated ER-positive primary breast tumors appears unable to bind to its cognate estrogen response element (ERE). We have observed partial reversibility of this ER DNA-binding defect upon treatment of these tumor extracts with excess thiol reducing agent (DTT), suggesting that ER DNA-binding is subject to redox modulation as is reported for other zinc-finger proteins and transcriptional activators. Treatment of recombinant ER DNA-binding domain (ER-DBD) or ER-enriched extracts from CHO ER and MCF-7 cells with thiol-reacting oxidants (diamide, iodosobenzoate, H 2O 2) or alkylator (iodoacetamide) produces a dose-dependent loss in ER DNA-binding capacity. Thiol-specific oxidative loss in ER DNA-binding is fully reversible by DTT reduction, unlike the defect caused by thiol-specific alkylation. Circular dichroism spectrometry shows that both forms of treatment substantially modify ER secondary structure, inducing loss of α-helical content within the ER-DBD that is reversible after thiol oxidation but not after thiol alkylation. Oxidant (H 2O 2, menadione) exposure of cultured CHO ER or MCF-7 cells impairs the ability of endogenous ER to bind DNA and transactivate an ER-responsive reporter gene (ERE-tk-CAT), demonstrating that extracellular redox stress can modulate intracellular ER function. Since these thiol-specific oxidant and alkylator treatments have no significant effect on either recombinant ER ligand-binding or intracellular immunoreactive ER content, our findings suggest that DNA-binding and transactivation are the most sensitive intracellular ER functions impaired by oxidant stress in some ER-positive human breast tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.